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Abstract

I propose a representation formalism and algorithms
to be used in a new language generation mechanism
for text-to-text applications. The generation process is
driven by both text-specific information encoded via
probability distributions over words and phrases derived
from the input text, and general language knowledge
captured by n-gram and syntactic language models.

A Text-to-Text Perspective on Natural
Language Generation

Many of today’s most popular natural language applications
– Machine Translation, Summarization, Question Answer-
ing – are text-to-text applications. That is, they produce tex-
tual outputs from inputs that are also textual. Because these
applications need to produce well-formed text, it would ap-
pear natural that they are the favorite testbed for generic
generation components developed within the Natural Lan-
guage Generation (NLG) community. Instead of relying on
generic NLG systems, however, most of the current text-to-
text applications use other means to address the generation
need. In Machine Translation (MT), for example, sentences
are produced using application-specific “decoders”, inspired
by work on speech recognition, whereas in Summarization,
summaries are produced as either extracts or using task-
specific strategies. The main reason for which text-to-text
applications do not usually involve generic NLG systems is
that such applications do not have access to the kind of in-
formation (e.g., semantic representations or lexical depen-
dencies) that the input representation formalisms of current
NLG systems require.

Formalisms and Algorithms for Text-to-Text
Natural Language Generation

In my thesis, I will develop a representation formalism and
algorithms – together with formal proofs – to be used in
defining a new language generation mechanism. I will also
implement this generation mechanism in a generic NLG sys-
tem adaptable to a variety of text-to-text applications.
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A representation formalism suitable for this purpose
needs to be compact (e.g., linear in the number of words
available), information-slim (e.g., not based on hard-to-
acquire information, such as semantic representations), ca-
pable of handling probability distributions (critical in many
current text-to-text applications), and application indepen-
dent. In my thesis, I extend the proposal of Nederhof
and Satta (2004) to arrive at a formalism that satisfies
the above requirements, called weighted IDL-expressions
(WIDL-expressions). The WIDL formalism encodes mean-
ing via words and phrases that are combined using a set of
formally defined operators handling word choice (the ∨ op-
erator), precedence (the · operator), phrasal combination (the
× operator), and underspecified/free word order (the ‖ oper-
ator) (see Figure 1(a)). A probability distribution is associ-
ated with each instance of these operators, which assigns a
probability value to each of the strings encoded under these
operators (see the δs in Figure 1(a)). This representation for-
malism uses information available in most text-based appli-
cations (i.e., appropriate words and phrases, perhaps with
associated probability distributions), and has the potential to
handle all the available information that is relevant to the
generation process (such as bias for word choice, word or-
der, phrasal combination, etc.).

Using the WIDL representation, my generation mecha-
nism is driven by both the information encoded in the WIDL
probability distributions and various sources of language
knowledge, such as n-gram language models (Goodman
2001) and syntactic language models (Charniak 2001). The
generation algorithms I develop intersect the language de-
scribed by WIDL-expressions with various language model
combinations, while preserving the compactness property of
WIDL-expressions. The output of the generation process is
the string encoded by the input WIDL-expression that re-
ceives the highest score under the combination of WIDL
and language model scores used. In Figure 1, for example,
the string the prisoners were finally released is generated
from the given WIDL-expression after being scored by the
WIDL-expression, by an n-gram language model, and also
by a syntactic language model (which hypothesizes syntac-
tic trees on top of strings to arrive at its estimate).

Training the language models used by my generation
mechanism requires a language knowledge acquisition step.
While an n-gram language model requires no amount of
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Figure 1: Mapping WIDL-expressions into syntactic parse trees. The WIDLscore results from the probability distributions δ1

and δ2; the NGLMscore results from evaluating the realized string the prisoners were finally released under the n-gram language
model, and the SBLMscore results from evaluating the hypothesized syntactic tree under the syntactic language model.

annotation/supervision to train, a syntactic language model
requires unobserved variables (the syntactic trees) to train
its parameters. The amount of annotated data available for
this purpose (1 million words of English from the Wall
Street Journal, known as the PennTree Bank) is insufficient
to provide high coverage for learning lexical dependencies,
which are critical for a high-performance syntactic language
model. Bootstrapping techniques, such as self-training and
co-training (Bloom & Mitchell 1998), have been shown to
be ineffective for learning lexical dependencies for improv-
ing state-of-the-art parsing accuracy (Steedman et al. 2003).
In the context of learning lexical dependencies for syntactic
language modeling, however, the accuracy of a syntactic lan-
guage model increases if self-training is used. Using a lex-
icalized statistical syntactic parser, I automatically acquire
large amounts of language knowledge in the form of lexi-
cal and syntactic dependencies from unannotated text. These
dependencies, albeit noisy, help increasing the ability of the
syntactic language model to distinguish bad sentence real-
izations from good ones. This is considerably less expensive
than relying on human expertise to create such knowledge,
either by hand or through a corpus annotation process. It
also has the advantage that new language knowledge events
can easily be learned for different genres, domains, and even
languages.

Current Status of Formalism and Algorithm
Development

I have already defined the formalism of WIDL-expressions,
and devised algorithms for intersecting WIDL-expressions
with n-gram language models. I have proved the correctness
of these algorithms, and showed that their complexity is lin-
ear in the complexity of the input WIDL expression. I have
also implemented a syntactic language model starting from
a lexicalized parsing model proposed by Collins (2003), and
bootstrapped the model using large amounts of unannotated
text. I performed preliminary experiments that show that the
self-training procedure helps the syntactic language model
perform significantly better on a word-ordering task. I also
have empirical results that show that a log-linear combina-
tion between an n-gram language model and a bootstrapped
syntactic language model outperforms any of these models
taken separately on a word-ordering task.

Future Work on Text-to-Text Natural
Language Generation

I still need to develop and implement algorithms for inter-
secting WIDL-expressions with a combination between an
n-gram language model and a syntactic language model, and
to prove the formal properties of these algorithms. I also plan
to show the effectiveness of this generic, WIDL-based NLG
system by implementing two end-to-end text-based appli-
cations. The first application is a machine translation sys-
tem. I plan to capture translation model information using
the probabilistic framework of WIDL-expressions, and tar-
get language model information using an n-gram and syn-
tactic language model combination. The second application
is a headline generation system. For such a summarization
task, I plan to use information extraction techniques to as-
sociate scores with key words/phrases in the document(s) to
be summarized, and map them into WIDL-expressions. An
n-gram and syntactic language model combination will be
in charge with realizing the most probable headline from a
given WIDL-expression.
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