Using a large monolingual corpus to improve
translation accuracy

Radu Soricut, Kevin Knight, and Daniel Marcu
Information Sciences Institute
University of Southern California
4676 Admiralty Way, Suite 1001
Marina del Rey, CA 90292
{radu, knight, marcu}@Qisi.edu

Abstract. The existence of a phrase in a large monolingual corpus is
very useful information, and so is its frequency. We introduce an al-
ternative approach to automatic translation of phrases/sentences that
operationalizes this observation. We use a statistical machine transla-
tion system to produce alternative translations and a large monolingual
corpus to (re)rank these translations. Our results show that this combina-
tion yields better translations, especially when translating out-of-domain
phrases/sentences. Our approach can be also used to automatically con-
struct parallel corpora from monolingual resources.

1 Introduction

Corpus-based approaches to machine translation usually begin with a bilingual
training corpus. One approach is to extract from the corpus generalized statis-
tical knowledge that can be applied to new, unseen test sentences. A different
approach is to simply memorize the bilingual corpus. This is called translation
memory [1], and it provides excellent translation quality in the case of a “hit”
(i.e., a test sentence to be translated has actually been observed before in the
memorized corpus). However, it provides no output in the more frequent case of
a “miss”.

While it is often unlikely that a test sentence will be found in a limited
bilingual training corpus, it is much more likely that its translation will be found
in a vast monolingual corpus. For example, note that the English sentence “She
made quite a good job.” does not appear on Google’s Web index. But “She
did quite a good job.” does appear. If both sentences are suggested to us as
translations, we can therefore automatically prefer the latter simply because this
string has been observed before in a large monolingual corpus of English text.
Similarly, on the basis of the frequency of a phrase, we may prefer as translation
of the French phrase “elle a beaucoup de cran” the English phrase “she has a
lot of guts” as opposed to, say, “it has a lot of guts”, even if both phrases are
found in a large monolingual corpus (Altavista’s Web index)®. Their frequencies,
however, differ by a factor of seven, and we can prefer the former translation on

! “The road from Angkor Wat ... it has a lot of guts to call itself a road.”

It is not fair .

RN

Ce ne est pas juste .

Fig. 1. Sample word alignment.

that basis. A similar idea has been proposed by Grefenstette [2] as an approach
to lexical choice for machine translation. We take this idea a step further and
propose the use of a vast monolingual corpus to validate full translations.

In this paper we introduce an alternative approach to machine translation
that operationalizes the intuitions above. Our method uses a statistical machine
translation system to produce alternative translations and a large monolingual
corpus to (re)rank these alternative translations. We contribute to the field of
machine translation in two ways:

— We introduce algorithms capable of counting the number of occurrences
of a large number of translations (about 103°°) in a large monolingual se-
quence/corpus (about 1 billion words of English text).

— We show empirically that the accuracy of a statistical MT system can be
improved if translated phrases/sentences are re-ranked according to their
likelihood of occurring in a large monolingual corpus.

The algorithms we introduce can be also used to automatically construct
parallel corpora starting from a translation table and a large monolingual corpus.

2 IBM Model 4

In this paper we use the IBM Model 4 [3]. For our purposes, the important feature
of this model is that, for any given input French sentence, we can compute a
large list of potential English translations (of order 103 or even larger, see
Section 3.2). IBM Model 4 revolves around the notion of word alignment over a
pair of sentences (see Figure 1). A word alignment assigns a single English string
position to each French word.

The word alignment in Figure 1 is shorthand for a hypothetical stochastic
process by which an English string gets converted into a French string. There
are several steps to be made. First, every English word is assigned a fertility.
We delete from the string any word with fertility zero, we duplicate any word
with fertility two, etc. Second, after each English word in the new string, we may
insert an invisible NULL element with probability p; (typically about 0.02). The
NULL element ultimately produces “spurious” French words. Next, we perform a
word-for-word replacement of English words (including NULL) by French words,
according to certain translation probabilities t(f; | e;) (which together form a
translation table, or T-table). Finally, the French words are permuted according
to certain distortion probabilities.

3 Multiple string matching against large sequences

From a computer science perspective, the problem we are trying to solve is
simple: we are interested in determining the number of occurrences of a set of
strings/translations {t1,t2,...,t,} in a large sequence/corpus S. When n and S
are small, this is a trivial problem, and tools such as grep can easily solve the
problem. Unfortunately, for large n, the problem becomes extremely challenging.

3.1 Naive approaches
Simple grep

We ignore for the moment that we need to search for n strings. Even if one tries
to search for all the occurrences of one string ¢; in a corpus of 1 billion-words,
grep will take about 30 minutes. Unfortunately, we do not have to search for 1
string, but for about 103%°. Searching sequentially using grep is clearly infeasible.

Regular expressions and egrep

Another idea is to represent all the possible strings/translations in a regular
expression. Given that these translations share a lot of information, one can
expect that the resulting regular expression will be much more compact than a
sequential enumeration of all possible translations. We developed an algorithm
to compactly represent all the possible translations as a regular expression. For
a 6-word French sentence, the regular expression that subsumes all its possible
translations into English takes roughly 4 Mbytes. Such huge expressions cannot
be processed by egrep.

Querying the Web

Another attractive solution seems to be that of querying directly the Web. After
all, the Web can provide us access to the ultimate monolingual corpus; and search
engines like Google answer queries in only a few mili-seconds. Unfortunately, one
cannot do searches of large regular expressions on the Web, and therefore even
if one search takes 1 ms, 10390 searches take an infeasible amount of time.

3.2 Multiple string matching using FSAs

In order to solve the multiple string matching problem, we decided to expand
on a solution proposed initially by Knight and Al-Onaizan [4], which proposes a
finite state acceptor (FSA) to compactly represent possible English translations
of a French sentence. If the IBM Model 4 is used as translation model, then
such an FSA has to account for all the stochastic steps described in Section 2.
Fortunately, one can build small acceptors (FSAs) and transducers (FSTs) that
account for each of these steps separately, and then compose them together to
obtain an acceptor which accounts for all of them.

Representing multiple translations as FSAs

In the framework of IBM Model 4 we start with an English string and per-
form several steps to probabilistically arrive at a French string. When translat-
ing/decoding, we need to perform all the steps described in Section 2 in reverse
order to obtain the English strings that may have produced the French sentence.

Assume that we are interested in representing compactly all English trans-
lations of the French phrase “un bon choix”. Since French and English have
different word orders, we first need to generate all possible permutations of the
French words. An FSA that accomplishes this task is presented in Figure 2(b).

The mapping between French and English words is often ambiguous. When
translating from French into English, we can translate “un” as “a”, “an”, or
even as NULL. We can build an FST to take into account the multiple trans-
lation possibilities. Given that we actually build probabilistic transducers, the
probabilities associated with these possibilities can be incorporated. The T-table
(Section 2) can be used to build a simple transducer: it has only one state and
has one transition for each entry in the T-table (a highly simplified version is
shown in Figure 2(a)). Composing this FST with the previous FSA results in an
FSA modeling both the different word order and the word translation ambiguity
phenomena (Figure 2(c)).

The story gets more complicated as one has to add new transducers for the
other steps discussed in Section 2. For example, our French phrase “un bon
choix” can be translated as “good choice” in English. Our model accomplishes
this by considering the word “un” to be the translation of a NULL English word.
A simple two-state automaton is used to model the NULL word insertions (see
Figure 2(d)).

Finally, fertility also needs to be modeled by an FSA. In Figure 1, for exam-
ple, the English word “not” is mapped into both “ne” and “pas”. This can be
simulated by using the fertility 2 of “not” to first multiply it (i.e., create “not
not” on the English side), and then translating the first one as “ne” and the
second one as “pas”. A simple FSA (not shown here) can be used to model word
fertilities.

The step-wise composition of these automata is shown in Figure 2. (Only very
few possible translations are illustrated, and the probabilities are not included
in the picture for readability.) For a given French sentence f, the final result
of these operations is a non-deterministic FSA with epsilon transitions, which
we generically call FSA(}. For a 6-word French sentence f such as “elle me a
beaucoup appris .”, the finite state acceptor we automatically generate has 464
states, 42139 arcs, and takes 1,172 Kbytes. The total number of paths (without
cycles) is 10328, There are a number of advantages to this representation:

— FSA? enumerates all possible English translations of f (according to the
translation model).

— FSA? reflects the goodness of each translation e; as assessed by the statis-
tical model used to generate it; as Knight and Al-Onaizan [4] have shown,
the probability of a path e through the FSA corresponds to the IBM-style
transition model probability P(f|e) [3].

alun

NULL/un
L
GO

choicefchoiX”goodbon

choice/choice

&/NULL

Fig. 2. Step-wise composition of FSAs/FSTs.

- FSA?c can be used as a binary classifier for English strings/translations (“yes”
if string e is a possible translation of f; “no” otherwise).

A finite state machine built in this manner operates as a rudimentary statistical
machine translation system. Given a French sentence f, it can output all its En-
glish translations e; and their IBM-4 translation probabilities (modulo distortion
probabilities).

Matching FSAs against large sequences

In the previous section, we have shown how to automatically build, for a given
French sentence f, a finite state acceptor FSA(} that encodes all possible English
translations of f. The next step is to use FSAY to find all the occurrences of the
possible English translations of f in a large monolingual corpus. In order to be
able to perform the string matching operations, we need to modify the monolin-
gual corpus such that all the English words unknown to FSA(} are replaced by
UNK in the monolingual corpus. The acceptor FSA(J’c needs also to be slightly
modified to account for the UNK token, and we call the resulted acceptor FSA}.
We do not describe these modifications here due to lack of space.

A summary of all the operations is presented in Figure 3. From a French
sentence f, using the parameters of a statistical translation model, a finite state
acceptor FSA§ is built. FSAY is further modified to yield FSA}. A large English
corpus is taken sentence by sentence and modified such that all English words not
known by FSA(} are replaced by UNK. Each modified sentence is matched against
FSA}, and for each sentence accepted by FSA} we store the string matched, and

French sentence f

Monolingual corpus S

Modified corpus

all possible matches with counts

Fig. 3. Multiple string matching against a large corpus

also keep a count of each appearance. We end up with all possible translations
of f that also occur in the corpus S, and their counts. The number of observed
translations of f decreases from an order of magnitude of 103%° as proposed by
the translation model to an order of magnitude of 103-108.

All these operations can be performed using off-the-shelf software. We use
a publicly available finite-state package? to perform the composition operations
which yield FSA?. We use the same package for the string matching problem:
FSA}c is loaded into memory and matched sentence by sentence against the
corpus, performing the acceptance test.

4 Time performance issues

The multi-string matching method described in Section 3 is capable of finding all
translations of a given French sentence in a large monolingual, English corpus,
but it needs to be performed in parallel in order to be usable. A parallel version
of our algorithm, run on a Linux cluster of 192 nodes and 384 CPUs (Pentium
3, 766MHz & 866MHz), obtains linear speed-up in run-time with the increase in
the number of processors. For a 6-word French sentence we obtain the following
reductions in time as we increase the number of processors:

1 Processor: 30 hrs. (1800 min.)
10 Processors: 3 hrs. (180 min.)
100 Processors: 0.3 hrs. (18 min.)

The parallelization method is straightforward: given the total number of sen-
tences in the corpus, one has to assign an equal number of sentences to each
processor, run in parallel the algorithm on each such corpus, and then collect
and sum up the results.

2 http://www.isi.edu/licensed-sw/carmel/index.html

5 Performance evaluation

In order to asses whether our translation method can improve the performance
of IBM Model 4 we collected a corpus of 1.6 billion words of English by collecting
various corpora made available by LDC3. The parameters of the statistical model
were trained on 500,000 parallel sentences from the Hansard genre using GIZA*.
We translated 101 in-domain French sentences (of length 6) taken from the
Hansard genre, and 110 out-of-domain French sentences (of length 6) taken from
Le Monde.

We translated these sentences using four different methods: two of them were
previously published methods using only the parameters of the statistical model
and different decoding algorithms — Stack and Greedy [5] — and were publicly
available for downloading®. The other two methods were variations of the method
using a Big monolingual Corpus (therefore called BC here): a pure BC method,
and a semi-automated method BCT where we looked at the first 10 translations
proposed by the BC method for each sentence and selected by hand the best
one.

5.1 The BC method

For a given French sentence suppose there is a possible translation occurring in
the monolingual corpus. For each such translation we store:

— The translation model probability which ignores distortions (T'M ™)
— The number of occurrences in the monolingual corpus (NO)
— The alignment for each translation

The formula NO x TM ™ is used for a pre-ranking from which the first 500 can-
didates are extracted. On each of these candidates we compute a language model
probability (LM) using trigrams and also (using the alignment) a translation
model probability which includes distortions (T'M).

The last step is to re-rank the top 500 candidates using a formula F(NO, LM, TM).
We currently re-rank according to the formula NO x LM x T M. The formula
F' can be trained to yield optimal results, which we leave for future work.

5.2 Evaluation

Table 1 shows the number of perfect translations obtained on both corpora by
each of the methods used. Here, “perfect” refers to a human-judged translation
that transmits all of the meaning of the source sentence using flawless target-
language syntax. The table also shows the number of untranslated/unscored
sentences for each corpus.

The BC method, which we introduced in this paper, produces 43 perfect
translations out of the 101 sentences of the in-domain corpus and returns zero

http://www.ldc.upenn.edu/

http://www.clsp.jhu.edu/ws99/projects/mt/

http://www.isi.edu/natural-language/projects/rewrite/

In-domain ||Out-of-domain
perfect|unsc. ||perfect| unsc.
Stack | 40 0 16 0
Greedy| 53 0 18 0

BC 43 7 24 33
BCT 62 7 32 33
Table 1. Translation scores obtained by different methods.

In-domain ||Out-of-domain
G perf.|G err.||G pertf.| G err.
BC perf.| 31 12 10 14
BCerr.| 22 29 8 45
Table 2. Confusion matrices for the BC and Greedy methods.

translations for 7, which means 42.5% recall and 45.7% precision. Returning
zero translations is a failure of our method which is discussed in Section 6. The
performance of the Greedy method is higher for in-domain sentences (52.4%
recall and precision).

For the 110 out-of-domain sentences, the BC method produces 24 perfect
translations and returns zero translations for 33, which means 21.8% recall and
31.1% precision. The Greedy method has a performance of only 16.3% recall and
precision on this corpus. These results show that, although the Greedy method
performs well on in-domain sentences, it is more dependent than the BC method
on the genre on which the parameters are trained. The BC method depends less
on the statistical parameters and therefore has a better performance for out-of-
domain sentences.

The BC* method outperforms the Stack and the Greedy methods for both
in-domain and out-of-domain sentences. It has 61.3% recall and 65.9% precision
for in-domain sentences, and 29.1% recall and 41.5% precision for out-of-domain
sentences. This proves that, although the formula used for re-ranking is perhaps
not optimal, the method proposed here can significantly improve translation
accuracy.

Another useful comparison is shown in Table 2. It indicates the amount of
overlap for the perfect translations produced by the BC and Greedy methods.
The confusion matrices prove that these two methods yield quite orthogonal re-
sults, i.e., their results are produced independently and the correct translations
do not necessarily overlap. For example, the BC method produces 12 in-domain
and 14 out-of-domain perfect translations. These translations are not found by
the Greedy decoder because they have a lower probability according to the trans-
lation model.

6 Discussion

In this section we examine a common cause for failure in our system, and also
briefly discuss the possible use of this translation method for other language
pairs.

A major cause of failure for the BC method is the gaps in the corpus S. By
the very idea of this method — trying to find phrases in S that are translations of
the initial sentence — the algorithm can fail to find any such possible translation,
returning zero proposed translations. This type of failure has several possible
fixes. One is to keep increasing the size of the corpus S beyond 1 billion words
of magnitude. Intuitively this gives our algorithm an increased chance of find-
ing good translation proposals. Another possible fix is to incorporate the BC
method, together with other translation methods, into a multi-engine system
which combines the strengths of each individual method.

And yet another possible approach to fixing this type of failure is to find a
reliable mechanism for splitting up sentences into “independent” sub-parts (such
as clauses, or elementary textual units [6]), and then translate them individually.
We suspect that such an approach would also allow for the method proposed here
to scale up to longer sentences without loosing much in the translation accuracy.

The method presented here has the potential to work for other language
pairs as well, as long as a large monolingual corpus of the target language and
a translation table for the language pair are available. The only extra condition
that seems to be required is that the monolingual corpus is comparable content-
wise with the corpus from which the sentences to be translated are extracted.

7 Building new parallel corpora

Parallel corpora are expensive resources that are time-consuming to build by
humans; yet, they are crucial for building high-performance statistical machine
translation systems. Although as a translation mechanism our method is both
time and resource consuming, we believe it can also be used to automatically con-
struct parallel corpora quicker and cheaper. We hypothesize that new phrase/sentence
pairs aligned by our method can be extracted and used for training, in order to
improve the estimates of the parameters of a statistical model.

References

1. Sprung, R., ed.: Translating Into Success: Cutting-Edge Strategies For Going Mul-
tilingual In A Global Age. John Benjamins Publishers (2000)

2. Grefenstette, G.: The world wide web as a resource for example-based machine
translation tasks. In: ASLIB, Translating and the Computer 21, London (1999)

3. Brown, P., Della Pietra, S., Della Pietra, V., Mercer, R.: The mathematics of
statistical machine translation: Parameter estimation. Computational Linguistics
19 (1993) 263-311

4. Knight, K., Al-Onaizan, Y.: Translation with finite-state devices. In: Proceedings
of the 44h AMTA Conference. (1998)

5. Germann, U., Jahr, M., Knight, K., Marcu, D., Yamada, K.: Fast decoding and op-
timal decoding for machine translation. In: Proceedings of the 39th Annual Meeting
of the Association for Computational Linguistics (ACL’01), Toulouse, France (2001)
6. Marcu, D.: A surface-based approach to identifying discourse markers and elemen-
tary textual units in unrestricted texts. In: Proceedings of the COLING/ACL-98
Workshop on Discourse Relations and Discourse Markers, Montreal, Canada (1998)

